0%

【Go语言设计与实现】Hash Table

Hash Table(哈希表,也叫散列表) 是在计算机科学中除了 Array 外应用最为广泛的数据结构,它通过 Hash 函数以 Key 为参数,计算出一个在Buckets Array中的 Index,用于将 Key 映射到表中的 Value。在平均情况下,哈希表具有 O(1) 的读写性能,实际证明它比搜索树等其他数据结构查找效率更高,所以也应用最为广泛。理想条件下,Hash 函数会将每个Key分配到不同的Bucket中,但是很多实际哈希表的实现中通常会使用一个不理想的Hash函数,从而会导致Hash冲突,所以哈希表的实现中需要考虑的一个重要问题是Hash冲突。

Go 语言中内置的 Map 类型实现了哈希表的数据结构,本文将介绍 Map 的使用方法与其实现原理。

使用介绍

基本使用

在 Go 语言中,map 类型如下所示,需要声明 Key 和 Value的数据类型,其中Key需要是一种可以比较的数据类型。

1
2
// map[KeyType]ValueType
var m map[string]int

Map 和 Slice、Pointer类似,是一种 Reference 类型,所以上面的 m 的值是 nil。对于一个 nil 的map,我们可以读,但是不能写,否则会造成 runtime panic。为了初始化一个map,我们可以用 make 函数:

1
2
3
m = make(map[string]int)
m["houmin"] = 7
m["cosmos"] = 0

这里的 make 函数将申请内存空间,并且初始化一个map的数据结构。

Map 有内置的 len 函数用于计算一个哈希表中有多少 item,也可以通过 delete 函数来删除元素。

1
2
n := len(m)
delete(m, "houmin")

为了访问map,注意这里在循环访问map的时候,并不保证各个key之间的顺序,同一段代码的两次访问顺序也不保证一致:

1
2
3
4
i, ok := m["houmin"]
for key, value := range m {
fmt.Println("Key:", key, "Value:", value)
}

我们也可以不使用 make 函数来初始化:

1
2
3
4
5
6
commits := map[string]int{
"rsc": 3711,
"r": 2138,
"gri": 1908,
"adg": 912,
}

并发访问

Go语言中的Map并不是并发安全的哈希表 ,Go 并没有定义同时读写 Map 可能发生的情况。如果你需要在并发执行的 Go Routine 中同时读写一个Map,那么一定需要某种同步机制来控制对于Map的访问,最常见的一种方式就是 sync.RWMutex

1
2
3
4
var counter = struct{
sync.RWMutex
m map[string]int
}{m: make(map[string]int)}

对于这里定义的 counter 变量,Read操作和Write操作如下:

1
2
3
4
5
6
7
8
9
10
// Read Operation
counter.RLock()
n := counter.m["some_key"]
counter.RUnlock()
fmt.Println("some_key:", n)

// Write Operation
counter.Lock()
counter.m["some_key"]++
counter.Unlock()

设计原理

根据上面的介绍,哈希表的设计总体可以表示如下:

1
2
3
4
5
6
func HashTable(key) value {
hash := HashFunc(key)
index := hash % array_size
value = GetValueFromBucketArray(index)
return value
}

想要实现一个性能优异的哈希表,关键点在于哈希函数和冲突解决方法的设计。

哈希函数

哈希函数负责将不同的Key映射到不同的Index上,哈希函数的选择在很大程度上能够决定哈希表的读写性能。在理想情况下,哈希函数应该能够将每个Key映射到一个唯一的的Index上,这要求哈希函数Value的范围大于Key的范围,但是由于实际情况下Key的数量会远远大于映射的范围,所以在实际使用时,这个理想的结果是不可能实现的。

perfect-hash-function

比较实际的方式是让哈希函数的结果能够尽可能的均匀分布,然后通过工程上的手段解决哈希碰撞的问题,但是哈希的结果一定要尽可能均匀,结果不均匀的哈希函数会造成更多的冲突并导致更差的读写性能。

bad-hash-function

在一个使用结果较为均匀的哈希函数中,哈希的增删改查都需要 O(1) 的时间复杂度,但是非常不均匀的哈希函数会导致所有的操作都会占用最差 O(n) 的复杂度,所以在哈希表中使用好的哈希函数是至关重要的。

冲突解决

在通常情况下,哈希函数输入的范围一定会远远大于输出的范围,所以在使用哈希表时一定会遇到冲突,哪怕我们使用了完美的哈希函数,当输入的键足够多最终也会造成冲突。然而我们的哈希函数往往都是不完美的,输出的范围是有限的,所以一定会发生哈希碰撞,这时就需要一些方法来解决哈希碰撞的问题,常见方法的就是开放寻址法和拉链法。

开放寻址法

开放寻址法 是一种在哈希表中解决哈希碰撞的方法,当哈希碰撞发生时,从发生碰撞的那个单元起,按照一定的次序,从哈希表中寻找一个空闲的单元,然后把发生冲突的元素存入到该单元。 具体的Hash计算方法如下,其中Hash(key) 为散列函数,m 为 散列表长,$D_i$ 为增量序列,i 为已发生冲突的次数。

根据 $D_i$ 的不同取法,我们有不同的探测方法:

  • 线性探测(Linear Probing):$D_i = i$
  • 平方探测(Quadratic Probing):$D_i = 1^2, 2^2, …, k^2$
  • 伪随机探测:$D_i$ 为伪随机序列。

Open Addressing

拉链法

与开放地址法相比,拉链法是哈希表中最常见的实现方法,大多数的编程语言都用拉链法实现哈希表,它的实现比较开放地址法稍微复杂一些,但是平均查找的长度也比较短,各个用于存储节点的内存都是动态申请的,可以节省比较多的存储空间。

实现拉链法一般会使用数组加上链表,不过有一些语言会在拉链法的哈希中引入红黑树以优化性能,拉链法会使用链表数组作为哈希底层的数据结构,我们可以将它看成一个可以扩展的「二维数组」:

Seperate Chaining

数据结构

Go 语言运行时同时使用了多个数据结构组合表示哈希表,其中使用 hmap 结构体来表示哈希,我们先来看一下这个结构体内部的字段:

1
2
3
4
5
6
7
8
9
10
11
12
13
type hmap struct {
count int
flags uint8
B uint8
noverflow uint16
hash0 uint32

buckets unsafe.Pointer
oldbuckets unsafe.Pointer
nevacuate uintptr

extra *mapextra
}
  1. count 表示当前哈希表中的元素数量;
  2. B 表示当前哈希表持有的 buckets 数量,但是因为哈希表中桶的数量都 2 的倍数,所以该字段会存储对数,也就是 len(buckets) == 2^B
  3. hash0 是哈希的种子,它能为哈希函数的结果引入随机性,这个值在创建哈希表时确定,并在调用哈希函数时作为参数传入;
  4. oldbuckets 是哈希在扩容时用于保存之前 buckets 的字段,它的大小是当前 buckets 的一半;

hmap-and-buckets

如上图所示哈希表 hmap 的桶就是 bmap,每一个 bmap 都能存储 8 个键值对,当哈希表中存储的数据过多,单个桶无法装满时就会使用 extra.overflow 中桶存储溢出的数据。上述两种不同的桶在内存中是连续存储的,我们在这里将它们分别称为正常桶和溢出桶,上图中黄色的 bmap 就是正常桶,绿色的 bmap 是溢出桶,溢出桶是在 Go 语言还使用 C 语言实现时就使用的设计3,由于它能够减少扩容的频率所以一直使用至今。

这个桶的结构体 bmap 在 Go 语言源代码中的定义只包含一个简单的 tophash 字段,tophash 存储了键的哈希的高 8 位,通过比较不同键的哈希的高 8 位可以减少访问键值对次数以提高性能:

1
2
3
type bmap struct {
tophash [bucketCnt]uint8
}

bmap 结构体其实不止包含 tophash 字段,由于哈希表中可能存储不同类型的键值对并且 Go 语言也不支持泛型,所以键值对占据的内存空间大小只能在编译时进行推导,这些字段在运行时也都是通过计算内存地址的方式直接访问的,所以它的定义中就没有包含这些字段,但是我们能根据编译期间的 cmd/compile/internal/gc.bmap 函数对它的结构重建:

1
2
3
4
5
6
7
type bmap struct {
topbits [8]uint8
keys [8]keytype
values [8]valuetype
pad uintptr
overflow uintptr
}

如果哈希表存储的数据逐渐增多,我们会对哈希表进行扩容或者使用额外的桶存储溢出的数据,不会让单个桶中的数据超过 8 个,不过溢出桶只是临时的解决方案,创建过多的溢出桶最终也会导致哈希的扩容。

从 Go 语言哈希的定义中就可以发现,它比前面两节提到的数组和切片复杂得多,结构体中不仅包含大量字段,还使用了较多的复杂结构,在后面的小节中我们会详细介绍不同字段的作用。

初始化

既然已经介绍了常见哈希表的基本原理和实现方法,那么可以开始分析 Go 语言中哈希表的实现,首先要分析的就是在 Go 语言中初始化哈希的两种方法 — 通过字面量和运行时。

字面量

目前的现代编程语言基本都支持使用字面量的方式初始化哈希,一般都会使用 key: value 的语法来表示键值对,Go 语言中也不例外:

1
2
3
4
5
hash := map[string]int{
"1": 2,
"3": 4,
"5": 6,
}

我们需要在初始化哈希时声明键值对的类型,这种使用字面量初始化的方式最终都会通过 cmd/compile/internal/gc.maplit 函数初始化,我们来分析一下 cmd/compile/internal/gc.maplit 函数初始化哈希的过程:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
func maplit(n *Node, m *Node, init *Nodes) {
a := nod(OMAKE, nil, nil)
a.Esc = n.Esc
a.List.Set2(typenod(n.Type), nodintconst(int64(n.List.Len())))
litas(m, a, init)

var stat, dyn []*Node
for _, r := range n.List.Slice() {
stat = append(stat, r)
}

if len(stat) > 25 {
...
} else {
addMapEntries(m, stat, init)
}
}

当哈希表中的元素数量少于或者等于 25 个时,编译器会直接调用 addMapEntries 将字面量初始化的结构体转换成以下的代码,将所有的键值对一次加入到哈希表中:

1
2
3
4
hash := make(map[string]int, 3)
hash["1"] = 2
hash["3"] = 4
hash["5"] = 6

这种初始化的方式与前面两节分析的数组切片的几乎完全相同,由此看来集合类型的初始化在 Go 语言中有着相同的处理方式和逻辑。

一旦哈希表中元素的数量超过了 25 个,就会在编译期间创建两个数组分别存储键和值的信息,这些键值对会通过一个如下所示的 for 循环加入目标的哈希:

1
2
3
4
5
6
hash := make(map[string]int, 26)
vstatk := []string{"1", "2", "3", ... , "26"}
vstatv := []int{1, 2, 3, ... , 26}
for i := 0; i < len(vstak); i++ {
hash[vstatk[i]] = vstatv[i]
}

这里展开的两个切片 vstatkvstatv 还会被编辑器继续展开,具体的展开方式可以阅读上一节了解切片的初始化,不过无论使用哪种方法,使用字面量初始化的过程都会使用 Go 语言中的关键字 make 来创建新的哈希并通过最原始的 [] 语法向哈希追加元素。

运行时

无论 make 是从哪里来的,只要我们使用 make 创建哈希,Go 语言编译器都会在类型检查期间将它们转换成对 runtime.makemap 的调用,使用字面量来初始化哈希也只是语言提供的辅助工具,最后调用的都是 runtime.makemap

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
func makemap(t *maptype, hint int, h *hmap) *hmap {
mem, overflow := math.MulUintptr(uintptr(hint), t.bucket.size)
if overflow || mem > maxAlloc {
hint = 0
}
if h == nil {
h = new(hmap)
}
h.hash0 = fastrand()

B := uint8(0)
for overLoadFactor(hint, B) {
B++
}
h.B = B

if h.B != 0 {
var nextOverflow *bmap
h.buckets, nextOverflow = makeBucketArray(t, h.B, nil)
if nextOverflow != nil {
h.extra = new(mapextra)
h.extra.nextOverflow = nextOverflow
}
}
return h
}

这个函数的执行过程会分成以下几个部分:

  1. 计算哈希占用的内存是否溢出或者超出能分配的最大值;
  2. 调用 fastrand 获取一个随机的哈希种子;
  3. 根据传入的 hint 计算出需要的最小需要的桶的数量;
  4. 使用 runtime.makeBucketArray 创建用于保存桶的数组;

runtime.makeBucketArray 函数会根据传入的 B 计算出的需要创建的桶数量在内存中分配一片连续的空间用于存储数据:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
func makeBucketArray(t *maptype, b uint8, dirtyalloc unsafe.Pointer) (buckets unsafe.Pointer, nextOverflow *bmap) {
base := bucketShift(b)
nbuckets := base
if b >= 4 {
nbuckets += bucketShift(b - 4)
sz := t.bucket.size * nbuckets
up := roundupsize(sz)
if up != sz {
nbuckets = up / t.bucket.size
}
}

buckets = newarray(t.bucket, int(nbuckets))
if base != nbuckets {
nextOverflow = (*bmap)(add(buckets, base*uintptr(t.bucketsize)))
last := (*bmap)(add(buckets, (nbuckets-1)*uintptr(t.bucketsize)))
last.setoverflow(t, (*bmap)(buckets))
}
return buckets, nextOverflow
}

当桶的数量小于 2424 时,由于数据较少、使用溢出桶的可能性较低,这时就会省略创建的过程以减少额外开销;当桶的数量多于 2424 时,就会额外创建 2𝐵−42B−4 个溢出桶,根据上述代码,我们能确定在正常情况下,正常桶和溢出桶在内存中的存储空间是连续的,只是被 hmap 中的不同字段引用,当溢出桶数量较多时会通过 runtime.newobject 创建新的溢出桶。

读写操作

哈希表作为一种数据结构,我们肯定需要分析它的常见操作,首先就需要了解其读写操作的实现原理,访问哈希表一般都是通过下标或者遍历两种方式进行的:

1
2
3
4
5
_ = hash[key]

for k, v := range hash {
// k, v
}

这两种方式虽然都能读取哈希表中的数据,但是使用的函数和底层的原理完全不同,前者需要知道哈希的键并且一次只能获取单个键对应的值,而后者可以遍历哈希中的全部键值对,访问数据时也不需要预先知道哈希的键,在这里我们会介绍前一种访问方式,第二种访问方式会在 range 一节中详细分析。

数据结构的写一般指的都是增加、删除和修改,增加和修改字段都使用索引和赋值语句,而删除字典中的数据需要使用关键字 delete

1
2
3
hash[key] = value
hash[key] = newValue
delete(hash, key)

除了这些操作之外,我们还会分析哈希的扩容过程,这能帮助我们深入理解哈希是如何对数据进行存储的。

访问

在编译的类型检查期间,hash[key] 以及类似的操作都会被转换成对哈希的 OINDEXMAP 操作,中间代码生成阶段会在 cmd/compile/internal/gc.walkexpr 函数中将这些 OINDEXMAP 操作转换成如下的代码:

1
2
v     := hash[key] // => v     := *mapaccess1(maptype, hash, &key)
v, ok := hash[key] // => v, ok := mapaccess2(maptype, hash, &key)

赋值语句左侧接受参数的个数会决定使用的运行时方法:

  1. 当接受参数仅为一个时,会使用 runtime.mapaccess1,该函数仅会返回一个指向目标值的指针;
  2. 当接受两个参数时,会使用 runtime.mapaccess2,除了返回目标值之外,它还会返回一个用于表示当前键对应的值是否存在的布尔值:

runtime.mapaccess1 函数会先通过哈希表设置的哈希函数、种子获取当前键对应的哈希,再通过 bucketMaskadd 函数拿到该键值对所在的桶序号和哈希最上面的 8 位数字。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
alg := t.key.alg
hash := alg.hash(key, uintptr(h.hash0))
m := bucketMask(h.B)
b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
top := tophash(hash)
bucketloop:
for ; b != nil; b = b.overflow(t) {
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
if b.tophash[i] == emptyRest {
break bucketloop
}
continue
}
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
if alg.equal(key, k) {
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
return v
}
}
}
return unsafe.Pointer(&zeroVal[0])
}

bucketloop 循环中,哈希会依次遍历正常桶和溢出桶中的数据,它会比较这 8 位数字和桶中存储的 tophash,每一个桶都存储键对应的 tophash,每一次读写操作都会与桶中所有的 tophash 进行比较,用于选择桶序号的是哈希的最低几位,而用于加速访问的是哈希的高 8 位,这种设计能够减少同一个桶中有大量相等 tophash 的概率。

hashtable-mapaccess

图 3-13 访问哈希表中的数据

如上图所示,每一个桶都是一整片的内存空间,当发现桶中的 tophash 与传入键的 tophash 匹配之后,我们会通过指针和偏移量获取哈希中存储的键 keys[0] 并与 key 比较,如果两者相同就会获取目标值的指针 values[0] 并返回。

另一个同样用于访问哈希表中数据的 runtime.mapaccess2 只是在 runtime.mapaccess1 的基础上多返回了一个标识键值对是否存在的布尔值:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool) {
...
bucketloop:
for ; b != nil; b = b.overflow(t) {
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
if b.tophash[i] == emptyRest {
break bucketloop
}
continue
}
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
if alg.equal(key, k) {
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
return v, true
}
}
}
return unsafe.Pointer(&zeroVal[0]), false
}

使用 v, ok := hash[k] 的形式访问哈希表中元素时,我们能够通过这个布尔值更准确地知道当 v == nil 时,v 到底是哈希中存储的元素还是表示该键对应的元素不存在,所以在访问哈希时,更推荐使用这一种方式先判断元素是否存在。

上面的过程其实是在正常情况下,访问哈希表中元素时的表现,然而与数组一样,哈希表可能会在装载因子过高或者溢出桶过多时进行扩容,哈希表的扩容并不是一个原子的过程,在扩容的过程中保证哈希的访问是比较有意思的话题,我们在这里其实也省略了相关的代码,不过会在下面展开介绍。

写入

当形如 hash[k] 的表达式出现在赋值符号左侧时,该表达式也会在编译期间转换成调用 runtime.mapassign 函数,该函数与 runtime.mapaccess1 比较相似,我们将该其分成几个部分分析,首先是函数会根据传入的键拿到对应的哈希和桶:

1
2
3
4
5
6
7
8
9
10
func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
alg := t.key.alg
hash := alg.hash(key, uintptr(h.hash0))

h.flags ^= hashWriting

again:
bucket := hash & bucketMask(h.B)
b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
top := tophash(hash)

然后通过遍历比较桶中存储的 tophash 和键的哈希,如果找到了相同结果就会获取目标位置的地址并返回,其中 inserti 表示目标元素的在桶中的索引,insertkval 分别表示键值对的地址,获得目标地址之后会直接通过算术计算进行寻址获得键值对 kval

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
	var inserti *uint8
var insertk unsafe.Pointer
var val unsafe.Pointer
bucketloop:
for {
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
if isEmpty(b.tophash[i]) && inserti == nil {
inserti = &b.tophash[i]
insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
}
if b.tophash[i] == emptyRest {
break bucketloop
}
continue
}
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
if !alg.equal(key, k) {
continue
}
val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
goto done
}
ovf := b.overflow(t)
if ovf == nil {
break
}
b = ovf
}

在上述的 for 循环中会依次遍历正常桶和溢出桶中存储的数据,整个过程会依次判断 tophash 是否相等、key 是否相等,遍历结束后会从循环中跳出。

hashtable-overflow-bucket

图 3-15 哈希遍历溢出桶

如果当前桶已经满了,哈希会调用 newoverflow 函数创建新桶或者使用 hmap 预先在 noverflow 中创建好的桶来保存数据,新创建的桶不仅会被追加到已有桶的末尾,还会增加哈希表的 noverflow 计数器。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
	if inserti == nil {
newb := h.newoverflow(t, b)
inserti = &newb.tophash[0]
insertk = add(unsafe.Pointer(newb), dataOffset)
val = add(insertk, bucketCnt*uintptr(t.keysize))
}

typedmemmove(t.key, insertk, key)
*inserti = top
h.count++

done:
return val
}

如果当前键值对在哈希中不存在,哈希为新键值对规划存储的内存地址,通过 typedmemmove 将键移动到对应的内存空间中并返回键对应值的地址 val,如果当前键值对在哈希中存在,那么就会直接返回目标区域的内存地址。哈希并不会在 mapassign 这个运行时函数中将值拷贝到桶中,该函数只会返回内存地址,真正的赋值操作是在编译期间插入的:

1
2
3
4
00018 (+5) CALL runtime.mapassign_fast64(SB)
00020 (5) MOVQ 24(SP), DI ;; DI = &value
00026 (5) LEAQ go.string."88"(SB), AX ;; AX = &"88"
00027 (5) MOVQ AX, (DI) ;; *DI = AX

runtime.mapassign_fast64runtime.mapassign 函数的实现差不多,我们需要关注的是后面的三行代码,24(SP) 就是该函数返回的值地址,我们通过 LEAQ 指令将字符串的地址存储到寄存器 AX 中,MOVQ 指令将字符串 "88" 存储到了目标地址上完成了这次哈希的写入。

扩容

我们在介绍哈希的写入过程时省略了扩容操作,随着哈希表中元素的逐渐增加,哈希的性能会逐渐恶化,所以我们需要更多的桶和更大的内存保证哈希的读写性能:

1
2
3
4
5
6
7
8
func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
...
if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
hashGrow(t, h)
goto again
}
...
}

runtime.mapassign 函数会在以下两种情况发生时触发哈希的扩容:

  1. 装载因子已经超过 6.5;
  2. 哈希使用了太多溢出桶;

不过由于 Go 语言哈希的扩容不是一个原子的过程,所以 runtime.mapassign 函数还需要判断当前哈希是否已经处于扩容状态,避免二次扩容造成混乱。

根据触发的条件不同扩容的方式分成两种,如果这次扩容是溢出的桶太多导致的,那么这次扩容就是等量扩容 sameSizeGrowsameSizeGrow 是一种特殊情况下发生的扩容,当我们持续向哈希中插入数据并将它们全部删除时,如果哈希表中的数据量没有超过阈值,就会不断积累溢出桶造成缓慢的内存泄漏4runtime: limit the number of map overflow buckets 引入了 sameSizeGrow 通过重用已有的哈希扩容机制,一旦哈希中出现了过多的溢出桶,它就会创建新桶保存数据,垃圾回收会清理老的溢出桶并释放内存5

扩容的入口是 runtime.hashGrow 函数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
func hashGrow(t *maptype, h *hmap) {
bigger := uint8(1)
if !overLoadFactor(h.count+1, h.B) {
bigger = 0
h.flags |= sameSizeGrow
}
oldbuckets := h.buckets
newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil)

h.B += bigger
h.flags = flags
h.oldbuckets = oldbuckets
h.buckets = newbuckets
h.nevacuate = 0
h.noverflow = 0

h.extra.oldoverflow = h.extra.overflow
h.extra.overflow = nil
h.extra.nextOverflow = nextOverflow
}

哈希在扩容的过程中会通过 runtime.makeBucketArray 创建一组新桶和预创建的溢出桶,随后将原有的桶数组设置到 oldbuckets 上并将新的空桶设置到 buckets 上,溢出桶也使用了相同的逻辑进行更新,下图展示了触发扩容后的哈希:

hashtable-hashgrow

图 3-15 哈希表触发扩容

我们在 runtime.hashGrow 中还看不出来等量扩容和翻倍扩容的太多区别,等量扩容创建的新桶数量只是和旧桶一样,该函数中只是创建了新的桶,并没有对数据进行拷贝和转移,哈希表的数据迁移的过程在是 runtime.evacuate 函数中完成的,它会对传入桶中的元素进行『再分配』。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
newbit := h.noldbuckets()
if !evacuated(b) {
var xy [2]evacDst
x := &xy[0]
x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
x.k = add(unsafe.Pointer(x.b), dataOffset)
x.v = add(x.k, bucketCnt*uintptr(t.keysize))

y := &xy[1]
y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
y.k = add(unsafe.Pointer(y.b), dataOffset)
y.v = add(y.k, bucketCnt*uintptr(t.keysize))

runtime.evacuate 函数会将一个旧桶中的数据分流到两个新桶,所以它会创建两个用于保存分配上下文的 evacDst 结构体,这两个结构体分别指向了一个新桶:

hashtable-evacuate-destination

图 3-16 哈希表扩容目的

如果这是一等量扩容,旧桶与新桶之间是一对一的关系,所以两个 evacDst 结构体只会初始化一个,当哈希表的容量翻倍时,每个旧桶的元素会都被分流到新创建的两个桶中,我们仔细分析一下分流元素的逻辑:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
		for ; b != nil; b = b.overflow(t) {
k := add(unsafe.Pointer(b), dataOffset)
v := add(k, bucketCnt*uintptr(t.keysize))
for i := 0; i < bucketCnt; i, k, v = i+1, add(k, uintptr(t.keysize)), add(v, uintptr(t.valuesize)) {
top := b.tophash[i]
k2 := k
var useY uint8
hash := t.key.alg.hash(k2, uintptr(h.hash0))
if hash&newbit != 0 {
useY = 1
}
b.tophash[i] = evacuatedX + useY
dst := &xy[useY]

if dst.i == bucketCnt {
dst.b = h.newoverflow(t, dst.b)
dst.i = 0
dst.k = add(unsafe.Pointer(dst.b), dataOffset)
dst.v = add(dst.k, bucketCnt*uintptr(t.keysize))
}
dst.b.tophash[dst.i&(bucketCnt-1)] = top
typedmemmove(t.key, dst.k, k)
typedmemmove(t.elem, dst.v, v)
dst.i++
dst.k = add(dst.k, uintptr(t.keysize))
dst.v = add(dst.v, uintptr(t.valuesize))
}
}
...
}

只使用哈希函数是不能定位到具体某一个桶的,哈希函数只会返回很长的哈希,例如:b72bfae3f3285244c4732ce457cca823bc189e0b,我们还需一些方法将哈希映射到具体的桶上,在很多时候我们都会使用取模或者位操作来获取桶的编号,假如当前哈希中包含 4 个桶,那么它的桶掩码就是 0b11(3),使用位操作就会得到 3, 我们就会在 3 号桶中存储该数据:

1
0xb72bfae3f3285244c4732ce457cca823bc189e0b & 0b11 #=> 0

如果新的哈希表有 8 个桶,在大多数情况下,原来经过桶掩码 0b11 结果为 3 的数据会因为桶掩码增加了一位编程 0b111 而分流到新的 3 号和 7 号桶,所有数据也都会被 typedmemmove 拷贝到目标桶中:

hashtable-bucket-evacuate

图 3-17 哈希表桶数据的分流

runtime.evacuate 最后会调用 runtime.advanceEvacuationMark 增加哈希的 nevacuate 计数器,在所有的旧桶都被分流后清空哈希的 oldbucketsoldoverflow 字段:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
func advanceEvacuationMark(h *hmap, t *maptype, newbit uintptr) {
h.nevacuate++
stop := h.nevacuate + 1024
if stop > newbit {
stop = newbit
}
for h.nevacuate != stop && bucketEvacuated(t, h, h.nevacuate) {
h.nevacuate++
}
if h.nevacuate == newbit { // newbit == # of oldbuckets
h.oldbuckets = nil
if h.extra != nil {
h.extra.oldoverflow = nil
}
h.flags &^= sameSizeGrow
}
}

之前在分析哈希表访问函数 runtime.mapaccess1 时其实省略了扩容期间获取键值对的逻辑,当哈希表的 oldbuckets 存在时,就会先定位到旧桶并在该桶没有被分流时从中获取键值对。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
...
alg := t.key.alg
hash := alg.hash(key, uintptr(h.hash0))
m := bucketMask(h.B)
b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
if c := h.oldbuckets; c != nil {
if !h.sameSizeGrow() {
m >>= 1
}
oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize)))
if !evacuated(oldb) {
b = oldb
}
}
bucketloop:
...
}

因为旧桶中还没有被 runtime.evacuate 函数分流,其中还保存着我们需要使用的数据,会替代新创建的空桶提供数据。

我们在 runtime.mapassign 函数中也省略了一段逻辑,当哈希表正在处于扩容状态时,每次向哈希表写入值时都会触发 runtime.growWork 对哈希表的内容进行增量拷贝:

1
2
3
4
5
6
7
8
9
func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
...
again:
bucket := hash & bucketMask(h.B)
if h.growing() {
growWork(t, h, bucket)
}
...
}

当然除了写入操作之外,删除操作也会在哈希表扩容期间触发 runtime.growWork,触发的方式和代码与这里的逻辑几乎完全相同,都是计算当前值所在的桶,然后对该桶中的元素进行拷贝。

我们简单总结一下哈希表的扩容设计和原理,哈希在存储元素过多时会触发扩容操作,每次都会将桶的数量翻倍,整个扩容过程并不是原子的,而是通过 runtime.growWork 增量触发的,在扩容期间访问哈希表时会使用旧桶,向哈希表写入数据时会触发旧桶元素的分流;除了这种正常的扩容之外,为了解决大量写入、删除造成的内存泄漏问题,哈希引入了 sameSizeGrow 这一机制,在出现较多溢出桶时会对哈希进行『内存整理』减少对空间的占用。

删除

如果想要删除哈希中的元素,就需要使用 Go 语言中的 delete 关键字,这个关键的唯一作用就是将某一个键对应的元素从哈希表中删除,无论是该键对应的值是否存在,这个内建的函数都不会返回任何的结果。

hashtable-delete

图 3-18 哈希表删除操作

在编译期间,delete 关键字会被转换成操作为 ODELETE 的节点,而 ODELETE 会被 cmd/compile/internal/gc.walkexpr 转换成 mapdelete 函数簇中的一个,包括 mapdeletemapdelete_faststrmapdelete_fast32mapdelete_fast64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
func walkexpr(n *Node, init *Nodes) *Node {
switch n.Op {
case ODELETE:
init.AppendNodes(&n.Ninit)
map_ := n.List.First()
key := n.List.Second()
map_ = walkexpr(map_, init)
key = walkexpr(key, init)

t := map_.Type
fast := mapfast(t)
if fast == mapslow {
key = nod(OADDR, key, nil)
}
n = mkcall1(mapfndel(mapdelete[fast], t), nil, init, typename(t), map_, key)
}
}

这些函数的实现其实差不多,我们来分析其中的 runtime.mapdelete 函数,哈希表的删除逻辑与写入逻辑非常相似,只是触发哈希的删除需要使用关键字,如果在删除期间遇到了哈希表的扩容,就会对即将操作的桶进行分流,分流结束之后会找到桶中的目标元素完成键值对的删除工作。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
...
if h.growing() {
growWork(t, h, bucket)
}
...
search:
for ; b != nil; b = b.overflow(t) {
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
if b.tophash[i] == emptyRest {
break search
}
continue
}
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
k2 := k
if !alg.equal(key, k2) {
continue
}
*(*unsafe.Pointer)(k) = nil
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
*(*unsafe.Pointer)(v) = nil
b.tophash[i] = emptyOne
...
}
}
}

我们其实只需要知道 delete 关键字在编译期间经过类型检查中间代码生成阶段被转换成 runtime.mapdelete 函数簇中的一员就可以,用于处理删除逻辑的函数与哈希表的 runtime.mapassign 几乎完全相同,不太需要刻意关注。

小结

Go 语言使用拉链法来解决哈希碰撞的问题实现了哈希表,它的访问、写入和删除等操作都在编译期间转换成了运行时的函数或者方法。

哈希在每一个桶中存储键对应哈希的前 8 位,当对哈希进行操作时,这些 tophash 就成为了一级缓存帮助哈希快速遍历桶中元素,每一个桶都只能存储 8 个键值对,一旦当前哈希的某个桶超出 8 个,新的键值对就会被存储到哈希的溢出桶中。

随着键值对数量的增加,溢出桶的数量和哈希的装载因子也会逐渐升高,超过一定范围就会触发扩容,扩容会将桶的数量翻倍,元素再分配的过程也是在调用写操作时增量进行的,不会造成性能的瞬时巨大抖动。